Worksheet 1: Algebra Review

Name: \qquad

In your solutions to the exercises below, show the algebraic work that leads to the final answer.

Simplifying Algebraic Expressions

1. Simplify the following expressions.
(a) $\frac{1}{3^{-2}}-\frac{1}{3}+\frac{1}{4^{-1}}$.
(b) $\frac{\left(x^{2} y^{-3}\right)^{2}}{\left(y^{-3} x^{-2}\right)^{-2}}$.
(c) If $f(x)=x^{2}+3 x$ and $h \neq 0$, then simplify $\frac{f(x+h)-f(x)}{h}$.
(d) Rationalize $\frac{3}{x-\sqrt{x}}$.

Intervals

2. Write the following in interval notation.
(a) The open interval with endpoints 2 and 3 .
(b) The half-open interval with endpoints 2 and 3 that contains 2 but not 3 .

Solving Equations

3. Solve for $x: 2 y^{2} x-y^{2}-(1+3 y)=x$.
4. Find the solutions of $\frac{x^{2}}{3}+2 x-1=0$ exactly.
5. Find the solutions of $\frac{1}{x-4}+\frac{1}{x+4}=\frac{4}{x^{2}-16}$ exactly.

Exponential and Logarithmic Functions

6. Simplify the following.
(a) $\frac{2^{5 x}}{2^{x}}$
(b) $e^{2 x} e^{-3 x}$
7. Evaluate $\log _{4}(1 / 64)$.
8. Solve for t in the equation $\ln (t)-\ln \left(t^{2}\right)=5$ exactly.

Trigonometric Functions

9. On the unit circle mark off the following angles (in radians):
(a) $\frac{\pi}{2}, \pi$, and $-\frac{\pi}{2}$ together
(b) $\frac{\pi}{3}$ and $\frac{2 \pi}{3}$ together.

Inverse Functions

10. Find the inverse of each of the following functions, including the domain.
(a) $f(x)=\frac{x}{1+2 x}$ for $x \neq-\frac{1}{2}$
(b) $f(x)=\sqrt{18-2 x^{2}}$ for $0 \leq x \leq 3$.
(c) $f(x)=\ln \left(e^{2 x}+1\right)$ for all x.
