Worksheet 1: Algebra Review

Name: _____

In your solutions to the exercises below, show the algebraic work that leads to the final answer.

Simplifying Algebraic Expressions

1. Simplify the following expressions.

(a) $\frac{1}{3^{-2}} - \frac{1}{3} + \frac{1}{4^{-1}}$. (b) $\frac{(x^2y^{-3})^2}{(y^{-3}x^{-2})^{-2}}$. (c) If $f(x) = x^2 + 3x$ and $h \neq 0$, then simplify $\frac{f(x+h) - f(x)}{h}$.

(d) Rationalize $\frac{3}{x - \sqrt{x}}$.

Intervals

- 2. Write the following in interval notation.
 - (a) The open interval with endpoints 2 and 3.
 - (b) The half-open interval with endpoints 2 and 3 that contains 2 but not 3.

Solving Equations

3. Solve for x: $2y^2x - y^2 - (1 + 3y) = x$.

4. Find the solutions of $\frac{x^2}{3} + 2x - 1 = 0$ exactly.

5. Find the solutions of $\frac{1}{x-4} + \frac{1}{x+4} = \frac{4}{x^2-16}$ exactly.

Exponential and Logarithmic Functions

6. Simplify the following.

(a)
$$\frac{2^{5x}}{2^x}$$
 (b) $e^{2x}e^{-3x}$

7. Evaluate $\log_4(1/64)$.

8. Solve for t in the equation $\ln(t) - \ln(t^2) = 5$ exactly.

Trigonometric Functions

9. On the unit circle mark off the following angles (in radians):

(a)
$$\frac{\pi}{2}$$
, π , and $-\frac{\pi}{2}$ together (b) $\frac{\pi}{3}$ and $\frac{2\pi}{3}$ together.

Inverse Functions

10. Find the inverse of each of the following functions, including the domain.

(a)
$$f(x) = \frac{x}{1+2x}$$
 for $x \neq -\frac{1}{2}$
(b) $f(x) = \sqrt{18 - 2x^2}$ for $0 \le x \le 3$.
(c) $f(x) = \ln(e^{2x} + 1)$ for all x .