Worksheet 1 Solutions

Simplifying Algebraic Expressions

1. Simplify the following expressions.

(a)
$$\frac{1}{3^{-2}} - \frac{1}{3} + \frac{1}{4^{-1}}$$
.
(b) $\frac{(x^2y^{-3})^2}{(y^{-3}x^{-2})^{-2}}$.

(c) If $f(x) = x^2 + 3x$ and $h \neq 0$, then simplify $\frac{f(x+h) - f(x)}{h}$.

(d) Rationalize $\frac{3}{x - \sqrt{x}}$.

Solution.

(a)

(b)
$$\frac{1}{3^{-2}} - \frac{1}{3} + \frac{1}{4^{-1}} = 3^2 - \frac{1}{3} + 4^1 = 9 - \frac{1}{3} + 4 = \frac{38}{3}$$
$$\frac{(x^2y^{-3})^2}{(y^{-3}x^{-2})^{-2}} = \frac{x^4y^{-6}}{y^6x^4} = \frac{1}{y^{12}}.$$

(c)

$$\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^2 + 3(x+h) - x^2 + 3x}{h}$$
$$= \frac{x^2 + 2xh + h^2 + 3x + 3h - x^2 - 3x}{h}$$
$$= \frac{2xh + h^2 + 3h}{h}$$
$$= 2x + h + 3.$$

(d)

$$\frac{3}{x-\sqrt{x}} = \frac{3}{x-\sqrt{x}} \left(\frac{x+\sqrt{x}}{x+\sqrt{x}}\right) = \frac{3(x+\sqrt{x})}{x^2-x}.$$

Intervals

- 2. Write the following in interval notation.
 - (a) The open interval with endpoints 2 and 3.

(b) The half-open interval with endpoints 2 and 3 that contains 2 but not 3.

Solution.

(a) (2,3)(b) [2,3)

Solving Equations

3. Solve for $x: 2y^2x - y^2 - (1+3y) = x$.

Solution.

Bring all x terms to left-hand side and y terms to right-hand side:

$$2y^{2}x - x = y^{2} + (1 + 3y)$$
$$x(2y^{2} - 1) = y^{2} + (1 + 3y)$$
$$x = \frac{y^{2} + 1 + 3y}{2y^{2} - 1}.$$

4. Find the solutions of $\frac{x^2}{3} + 2x - 1 = 0$ exactly. Multiply by 3 then use the quadratic formula:

$$x^{2} + 6x - 3 = 0$$

$$x = \frac{-6 \pm \sqrt{36 - 4(1)(-3)}}{2(1)}$$

$$= -3 \pm \frac{\sqrt{48}}{2}$$

$$= -3 \pm 2\sqrt{3}.$$

5. Find the solutions of $\frac{1}{x-4} + \frac{1}{x+4} = \frac{4}{x^2-16}$ exactly.

Solution.

Find common denominator and then solve:

$$\frac{1}{x-4} + \frac{1}{x+4} = \frac{4}{x^2 - 16}$$
$$\frac{1}{x-4} + \frac{1}{x+4} = \frac{4}{(x+4)(x-4)}$$
$$\frac{(x+4) + (x-4)}{(x+4)(x-4)} = \frac{4}{(x+4)(x-4)}$$
$$(x+4) + (x-4) = 4$$
$$2x = 4$$
$$x = 2$$

Exponential and Logarithmic Functions

6. Simplify the following.

(a)
$$\frac{2^{5x}}{2^x}$$
 (b) $e^{2x}e^{-3x}$

Solution.

(a)

(b)
$$\frac{2^{5x}}{2^x} = 2^{5x-x} = 2^{4x}.$$
$$e^{2x}e^{-3x} = e^{2x+(-3x)} = e^{-x}.$$

7. Evaluate $\log_4(1/64)$.

Solution.

$$\log_4(1/64) \iff 4^x = \frac{1}{64} \iff x = -3.$$

Check: $4^{-3} = \frac{1}{4^3} = \frac{1}{64}$.

8. Solve for t in the equation $\ln(t) - \ln(t^2) = 5$ exactly.

Solution.

Using properties of logs:

$$\ln(t) - \ln(t^2) = 5$$
$$\ln\left(\frac{t}{t^2}\right) = 5$$
$$\ln\left(\frac{1}{t}\right) = 5$$
$$e^{\ln(1/t)} = e^5$$
$$\frac{1}{t} = e^5$$
$$t = \frac{1}{e^5}$$

Trigonometric Functions

9. On the unit circle mark off the following angles (in radians):

(a)
$$\frac{\pi}{2}$$
, π , and $-\frac{\pi}{2}$ together (b) $\frac{\pi}{3}$ and $\frac{2\pi}{3}$ together.

Solution.

See trig. review sheet.

Inverse Functions

10. Find the inverse of each of the following functions, including the domain.

(a)
$$f(x) = \frac{x}{1+2x}$$
 for $x \neq -\frac{1}{2}$
(b) $f(x) = \sqrt{18 - 2x^2}$ for $0 \le x \le 3$.

(c) $f(x) = \ln(e^{2x} + 1)$ for all x.

Solution.

Steps to find the inverse of a function:

- 1. Set y = f(x)
- 2. Switch y and x
- 3. Solve for y

(a) Let $y = f(x) = \frac{x}{1+2x}$. Swapping y and x and then solving:

$$x = \frac{y}{1+2y}$$
$$x(1+2y) = y$$
$$x+2xy = y$$
$$2xy - y = -x$$
$$y(2x-1) = -x$$
$$y = -\frac{x}{2x-1}$$

 So

$$f^{-1}(x) = -\frac{x}{2x-1}.$$

Now the only place that $f^{-1}(x)$ is undefined is when x = 1/2. Domain: All real numbers except $x = \frac{1}{2}$. (b) Let $y = f(x) = \sqrt{18 - 2x^2}$. Since $0 \le x \le 3$ we have that

$$0 \le y \le \sqrt{18}.$$

Swapping y and x and then solving:

$$x = \sqrt{18 - 2y^2}$$

$$x^2 = 18 - 2y^2$$

$$2y^2 = 18 - x^2$$

$$y = \pm \sqrt{\frac{18 - x^2}{2}}$$

But since y is always positive we just take the positive root as our answer:

$$f^{-1}(x) = \sqrt{\frac{18 - x^2}{2}}.$$

Domain: $0 \le x \le \sqrt{18}$. (c) Let $y = f(x) = \ln(e^{2x} + 1)$. Swapping x and y and then solving:

$$x = \ln(e^{2y} + 1)$$

$$e^{x} = e^{2y} + 1$$

$$e^{2y} = e^{x} - 1$$

$$2y = \ln(e^{x} - 1)$$

$$y = \frac{1}{2}\ln(e^{x} - 1)$$

 So

$$f^{-1}(x) = \frac{1}{2}\ln(e^x - 1).$$

Now $\ln(x)$ is only defined for x > 0. So we must solve for which x-values make $e^x - 1 > 0$.

$$e^{x} - 1 > 0$$
$$e^{x} > 1$$
$$x > \ln(1) = 0.$$

Domain: x > 0.