Worksheet 1 Solutions

Simplifying Algebraic Expressions

1. Simplify the following expressions.
(a) $\frac{1}{3^{-2}}-\frac{1}{3}+\frac{1}{4^{-1}}$.
(b) $\frac{\left(x^{2} y^{-3}\right)^{2}}{\left(y^{-3} x^{-2}\right)^{-2}}$.
(c) If $f(x)=x^{2}+3 x$ and $h \neq 0$, then simplify $\frac{f(x+h)-f(x)}{h}$.
(d) Rationalize $\frac{3}{x-\sqrt{x}}$.

Solution.

(a)

$$
\frac{1}{3^{-2}}-\frac{1}{3}+\frac{1}{4^{-1}}=3^{2}-\frac{1}{3}+4^{1}=9-\frac{1}{3}+4=\frac{38}{3}
$$

(b)

$$
\frac{\left(x^{2} y^{-3}\right)^{2}}{\left(y^{-3} x^{-2}\right)^{-2}}=\frac{x^{4} y^{-6}}{y^{6} x^{4}}=\frac{1}{y^{12}}
$$

(c)

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{(x+h)^{2}+3(x+h)-x^{2}+3 x}{h} \\
& =\frac{x^{2}+2 x h+h^{2}+3 x+3 h-x^{2}-3 x}{h} \\
& =\frac{2 x h+h^{2}+3 h}{h} \\
& =2 x+h+3 .
\end{aligned}
$$

(d)

$$
\frac{3}{x-\sqrt{x}}=\frac{3}{x-\sqrt{x}}\left(\frac{x+\sqrt{x}}{x+\sqrt{x}}\right)=\frac{3(x+\sqrt{x})}{x^{2}-x}
$$

Intervals

2. Write the following in interval notation.
(a) The open interval with endpoints 2 and 3 .
(b) The half-open interval with endpoints 2 and 3 that contains 2 but not 3 .

Solution.

(a) $(2,3)$
(b) $[2,3)$

Solving Equations

3. Solve for $x: 2 y^{2} x-y^{2}-(1+3 y)=x$.

Solution.

Bring all x terms to left-hand side and y terms to right-hand side:

$$
\begin{aligned}
2 y^{2} x-x & =y^{2}+(1+3 y) \\
x\left(2 y^{2}-1\right) & =y^{2}+(1+3 y) \\
x & =\frac{y^{2}+1+3 y}{2 y^{2}-1} .
\end{aligned}
$$

4. Find the solutions of $\frac{x^{2}}{3}+2 x-1=0$ exactly.

Multiply by 3 then use the quadratic formula:

$$
\begin{aligned}
x^{2}+6 x-3 & =0 \\
x & =\frac{-6 \pm \sqrt{36-4(1)(-3)}}{2(1)} \\
& =-3 \pm \frac{\sqrt{48}}{2} \\
& =-3 \pm 2 \sqrt{3} .
\end{aligned}
$$

5. Find the solutions of $\frac{1}{x-4}+\frac{1}{x+4}=\frac{4}{x^{2}-16}$ exactly.

Solution.

Find common denominator and then solve:

$$
\begin{aligned}
\frac{1}{x-4}+\frac{1}{x+4} & =\frac{4}{x^{2}-16} \\
\frac{1}{x-4}+\frac{1}{x+4} & =\frac{4}{(x+4)(x-4)} \\
\frac{(x+4)+(x-4)}{(x+4)(x-4)} & =\frac{4}{(x+4)(x-4)} \\
(x+4)+(x-4) & =4 \\
2 x & =4 \\
x & =2
\end{aligned}
$$

Exponential and Logarithmic Functions

6. Simplify the following.
(a) $\frac{2^{5 x}}{2^{x}}$
(b) $e^{2 x} e^{-3 x}$

Solution.

(a)

$$
\frac{2^{5 x}}{2^{x}}=2^{5 x-x}=2^{4 x}
$$

(b)

$$
e^{2 x} e^{-3 x}=e^{2 x+(-3 x)}=e^{-x} .
$$

7. Evaluate $\log _{4}(1 / 64)$.

Solution.

$$
\log _{4}(1 / 64) \Longleftrightarrow 4^{x}=\frac{1}{64} \Longleftrightarrow x=-3
$$

Check: $4^{-3}=\frac{1}{4^{3}}=\frac{1}{64}$.
8. Solve for t in the equation $\ln (t)-\ln \left(t^{2}\right)=5$ exactly.

Solution.

Using properties of logs:

$$
\begin{aligned}
\ln (t)-\ln \left(t^{2}\right) & =5 \\
\ln \left(\frac{t}{t^{2}}\right) & =5 \\
\ln \left(\frac{1}{t}\right) & =5 \\
e^{\ln (1 / t)} & =e^{5} \\
\frac{1}{t} & =e^{5} \\
t & =\frac{1}{e^{5}}
\end{aligned}
$$

Trigonometric Functions

9. On the unit circle mark off the following angles (in radians):
(a) $\frac{\pi}{2}, \pi$, and $-\frac{\pi}{2}$ together
(b) $\frac{\pi}{3}$ and $\frac{2 \pi}{3}$ together.

Solution.

See trig. review sheet.

Inverse Functions

10. Find the inverse of each of the following functions, including the domain.
(a) $f(x)=\frac{x}{1+2 x}$ for $x \neq-\frac{1}{2}$
(b) $f(x)=\sqrt{18-2 x^{2}}$ for $0 \leq x \leq 3$.
(c) $f(x)=\ln \left(e^{2 x}+1\right)$ for all x.

Solution.

Steps to find the inverse of a function:

1. Set $y=f(x)$
2. Switch y and x
3. Solve for y
(a) Let $y=f(x)=\frac{x}{1+2 x}$. Swapping y and x and then solving:

$$
\begin{aligned}
x & =\frac{y}{1+2 y} \\
x(1+2 y) & =y \\
x+2 x y & =y \\
2 x y-y & =-x \\
y(2 x-1) & =-x \\
y & =-\frac{x}{2 x-1} .
\end{aligned}
$$

So

$$
f^{-1}(x)=-\frac{x}{2 x-1} .
$$

Now the only place that $f^{-1}(x)$ is undefined is when $x=1 / 2$. Domain: All real numbers except $x=\frac{1}{2}$.
(b) Let $y=f(x)=\sqrt{18-2 x^{2}}$. Since $0 \leq x \leq 3$ we have that

$$
0 \leq y \leq \sqrt{18}
$$

Swapping y and x and then solving:

$$
\begin{aligned}
x & =\sqrt{18-2 y^{2}} \\
x^{2} & =18-2 y^{2} \\
2 y^{2} & =18-x^{2} \\
y & = \pm \sqrt{\frac{18-x^{2}}{2}} .
\end{aligned}
$$

But since y is always positive we just take the positive root as our answer:

$$
f^{-1}(x)=\sqrt{\frac{18-x^{2}}{2}}
$$

Domain: $0 \leq x \leq \sqrt{18}$.
(c) Let $y=f(x)=\ln \left(e^{2 x}+1\right)$. Swapping x and y and then solving:

$$
\begin{aligned}
x & =\ln \left(e^{2 y}+1\right) \\
e^{x} & =e^{2 y}+1 \\
e^{2 y} & =e^{x}-1 \\
2 y & =\ln \left(e^{x}-1\right) \\
y & =\frac{1}{2} \ln \left(e^{x}-1\right) .
\end{aligned}
$$

So

$$
f^{-1}(x)=\frac{1}{2} \ln \left(e^{x}-1\right) .
$$

Now $\ln (x)$ is only defined for $x>0$. So we must solve for which x-values make $e^{x}-1>0$.

$$
\begin{aligned}
e^{x}-1 & >0 \\
e^{x} & >1 \\
x & >\ln (1)=0 .
\end{aligned}
$$

Domain: $x>0$.

