Worksheet 4: More Derivatives (3.3-3.6) Solutions

Name: \qquad Due: June 15th by 3PM via HuskyCT

Compute the derivative of the functions below using any of the differentiation rules up through Section 3.6 .

1. $f(x)=\frac{\sin (x)}{1+\sin (x)}$

Solution.

$$
f^{\prime}(x)=\frac{(1+\sin x) \cos x-(\sin x)(\cos x)}{(1+\sin x)^{2}}=\frac{\cos x}{(1+\sin x)^{2}}
$$

2. $f(x)=\sin (x) \cos (x)$

Solution.

$$
f^{\prime}(x)=(\sin x)(-\sin x)+(\cos x)(\cos x)=-\sin ^{2} x+\cos ^{2} x
$$

3. $f(x)=x^{n} \cos (x), n$ a constant.

Solution.

$$
f^{\prime}(x)=n x^{n-1} \cos x+x^{n}(-\sin x)=x^{n-1}(n \cos x-x \sin x)
$$

4. $f(x)=\frac{\tan (x)}{x^{2}+1}$

Solution.

$$
f^{\prime}(x)=\frac{\left(\sec ^{2} x\right)\left(x^{2}+1\right)-(\tan x)(2 x)}{\left(x^{2}+1\right)^{2}}
$$

5. $y=\left(x^{3}-x+1\right)^{10}$

Solution.

$$
f^{\prime}(x)=10\left(x^{3}-x+1\right)^{9}\left(3 x^{2}-1\right)
$$

6. $y=\sqrt{x^{3}+4 x}$

Solution.

$$
f^{\prime}(x)=\frac{1}{2}\left(x^{3}+4 x\right)^{-1 / 2}\left(3 x^{2}+4\right)=\frac{3 x^{2}+4}{2 \sqrt{x^{3}+4 x}}
$$

7. $y=3^{x^{4}} \cos (x)$

Solution.

$$
f^{\prime}(x)=\left(3^{x^{4}} \ln (3) \cdot 4 x^{3}\right)(\cos x)+\left(3^{x^{4}}\right)(-\sin x)=3^{x^{4}}\left(4 \ln (3) x^{3} \cos x-\sin x\right)
$$

8. $f(x)=\ln (\sqrt{x})$

Solution.

$$
f^{\prime}(x)=\frac{1}{\sqrt{x}}\left(\frac{1}{2} x^{-1 / 2}\right)=\frac{1}{2 \sqrt{x} \sqrt{x}}=\frac{1}{2 x}
$$

9. $f(x)=x^{3 x^{2}}$

Solution.

Let $y=x^{3 x^{2}}$. Then

$$
\ln (y)=\ln \left(x^{3 x^{2}}\right)=3 x^{2} \ln (x)
$$

Differentiating both sides

$$
\frac{y^{\prime}}{y}=(6 x)(\ln (x))+\left(3 x^{2}\right)\left(\frac{1}{x}\right)=6 x \ln (x)+3 x .
$$

Multiplying both sides by y

$$
y^{\prime}=y(6 x \ln (x)+3 x)=x^{3 x^{2}}(6 x \ln (x)+3 x)=3 x^{3 x^{2}+1}(2 \ln (x)+1)
$$

Use implicit differentiation to differentiate y with respect to x. Your formula for y^{\prime} may involve both x and y.
10. $x^{2} y-a x y^{3}=x+y$, where a is a constant

Solution.

$$
\begin{aligned}
\left(2 x y+x^{2} y^{\prime}\right)-\left(a y^{3}+a x \cdot 3 y^{2} y^{\prime}\right) & =1+y^{\prime} \\
x^{2} y^{\prime}-3 a x y^{2} y^{\prime} & -y^{\prime}=1-2 x y+a y^{3} \\
y^{\prime}\left(x^{2}-3 a x y^{2}-1\right) & =1-2 x y+a y^{3} \\
y^{\prime} & =\frac{1-2 x y+a y^{3}}{\left.x^{2}-3 a x y^{2}-1\right)}
\end{aligned}
$$

11. $e^{x y}=x^{2}+y^{2}$

Solution.

$$
\begin{aligned}
e^{x y} \cdot \frac{d}{d x}(x y) & =2 x+2 y y^{\prime} \\
e^{x y}\left(1 \cdot y+x \cdot y^{\prime}\right) & =2 x+2 y y^{\prime} \\
e^{x y} y+e^{x y} x y^{\prime} & =2 x+2 y y^{\prime} \\
e^{x y} x y^{\prime}-2 y y^{\prime} & =2 x-e^{x y} y \\
y^{\prime}\left(e^{x y} x-2 y\right) & =2 x-e^{x y} y \\
y^{\prime} & =\frac{2 x-e^{x y} y}{e^{x y} x-2 y}
\end{aligned}
$$

12. $\sin (x+y)=x+\cos (3 y)$

Solution.

$$
\begin{aligned}
\cos (x+y)\left(1+y^{\prime}\right) & =1-\sin (3 y)\left(3 y^{\prime}\right) \\
\cos (x+y)+\cos (x+y) y^{\prime} & =1-3 \sin (3 y) y^{\prime} \\
\cos (x+y) y^{\prime}+3 \sin (3 y) y^{\prime} & =1-\cos (x+y) \\
y^{\prime}(\cos (x+y)+3 \sin (3 y)) & =1-\cos (x+y) \\
y^{\prime} & =\frac{1-\cos (x+y)}{\cos (x+y)+3 \sin (3 y)}
\end{aligned}
$$

13. Extra Credit: Show that for any $x>0$

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}
$$

Hint: Manipulate the fraction and the exponent algebraically and use the fact you learned from class (Section 3.6) that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.

Solution.

Just using algebra we can manipulate the expression $\left(1+\frac{x}{n}\right)^{n}$ to be

$$
\left(1+\frac{x}{n}\right)^{n}=\left(1+\frac{1}{n / x}\right)^{n}=\left(\left(1+\frac{1}{n / x}\right)^{n / x}\right)^{x}
$$

Notice that nothing in the problem was changed and that this can be simplified right back down to what we started with.
Now let $m=n / x$ so that

$$
\left(\left(1+\frac{1}{n / x}\right)^{n / x}\right)^{x}=\left(\left(1+\frac{1}{m}\right)^{m}\right)^{x}
$$

Hence, using the fact that $\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)=e$, we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} & =\lim _{m \rightarrow \infty}\left(\left(1+\frac{1}{m}\right)^{m}\right)^{x} \\
& =\left(\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m}\right)^{x} \\
& =(e)^{x} \\
& =e^{x}
\end{aligned}
$$

Note that in the above computation we were allowed to move the limit inside the parenthesis since $\left(\left(1+\frac{1}{m}\right)^{m}\right)^{x}$ is an exponential function [of the form $\left.b^{x}\right]$ and exponential functions are continuous. [Recall from earlier in the course you can move limits inside continuous functions.]

