Worksheet 4: More Derivatives (3.3-3.6)

Name: \qquad

Compute the derivative of the functions below using any of the differentiation rules up through Section 3.6.

1. $f(x)=\frac{\sin (x)}{1+\sin (x)}$
2. $f(x)=\sin (x) \cos (x)$
3. $f(x)=x^{n} \cos (x), n$ a constant.
4. $f(x)=\frac{\tan (x)}{x^{2}+1}$
5. $y=\left(x^{3}-x+1\right)^{10}$
6. $y=\sqrt{x^{3}+4 x}$
7. $y=3^{x^{4}} \cos (x)$
8. $f(x)=\ln (\sqrt{x})$
9. $f(x)=x^{3 x^{2}}$

Use implicit differentiation to differentiate y with respect to x. Your formula for y^{\prime} may involve both x and y.
10. $x^{2} y-a x y^{3}=x+y$, where a is a constant
11. $e^{x y}=x^{2}+y^{2}$
12. $\sin (x+y)=x+\cos (3 y)$
13. Extra Credit: Show that for any $x>0$

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}
$$

Hint: Manipulate the fraction and the exponent algebraically and use the fact you learned from class (Section 3.6) that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.

